What Is Atomic Force Microscopy? Atomic force microscopy (AFM) is a powerful technique that enables surface ultrastructure visualization at molecular resolution. 1 Besides three-dimensional (3D) ...
Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
Atomic force microscopy (AFM) and infrared (IR) spectroscopy have emerged as complementary techniques that enable the precise characterisation of materials at the nanoscale. AFM provides ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
Atomic force microscopy (AFM) is a way to investigate the surface features of some materials. It works by “feeling” or “touching” the surface with an extremely small probe. This provides a ...
AFM differs significantly from traditional microscopy techniques as it does not project light or electrons on the sample's surface to create its image. Instead, AFM utilizes a sharp probe while ...
First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Scientists at the Department of Energy's Oak Ridge National Laboratory have reimagined the capabilities of atomic force microscopy, or AFM, transforming it from a tool for imaging nanoscale features ...
Doing it yourself may not get you the most precise lab equipment in the world, but it gets you a hands-on appreciation of the techniques that just can’t be beat. Today’s example of this adage: [Stoppi ...
Conductive atomic force microscopy (C-AFM) is a powerful nanoscale characterization technique that combines the high-resolution imaging capabilities of atomic force microscopy (AFM) with the ability ...
A major advantage of atomic force microscopes (AFMs) is their versatility in integrating various operational modes that assess different material properties and functionalities. Among the most ...
Today we're looking at Atomic Force Microscopy! I built a "macro-AFM" to demonstrate the principles of an atomic force microscope, then we look at a real AFM (an nGauge AFM from ICSPI) and do a few ...