(a) A scanning electron microscope (SEM) image of the nanoneedle probe used for the measurements. (b) Elasticity map of a 1 µm × 1 µm area on the nuclear surface, showing the change in elasticity ...
STEM operates by focusing a beam of electrons into a narrow probe that is scanned across a thin specimen. As the electrons interact with the sample, they are either scattered or transmitted. The ...
SEM stands for scanning electron microscope. The SEM is a microscope that uses electrons instead of light to form an image. Since their development in the early 1950's, scanning electron microscopes ...
Electron microscopy (EM) has become an indispensable tool for investigating the nanoscale structure of a large range of materials, across physical and life sciences. It is vital for characterisation ...
Electron microscopy is a powerful technique that provides high-resolution images by focusing a beam of electrons to reveal fine structural details in biological and material specimens. 2 Because ...
Scanning transmission electron microscopy, or STEM, is a powerful imaging technique that enables researchers to study a material’s morphology, composition, and bonding behavior at the angstrom scale.
New NE-AFM method measures nuclear stiffness in living cells. It shows cancer nuclei change softness with chromatin and environment, aiding diagnosis and treatment. By employing a technique called ...